Vision for a Next Generation Light Source Facility

John Corlett

For the Next Generation Light Source Team Laser Safety Officer Workshop July 29, 2010

Choices We've Made in Design Studies for a **Next Generation Light Source (NGLS)**

- A coherent soft x-ray source addresses scientific needs
 - Requires short wavelength light with high peak and average brightness, high repetition rate, ultrashort pulses, and high energy resolution
- Utilizing <u>laser control</u> of relativistic <u>electron beams</u> is enabling
 - > Allows optimal control of x-ray source characteristics
- Technical choices are driven by <u>user needs</u>
 - > Photoinjector, superconducting accelerator, charge per bunch, electron energy, seeding, repetition rate, spectral range, multiple beamlines

The Technology of a Next Generation Light Source

Developments in high brightness electron beams, lasers, seeding, and optical manipulations allow enhancement of performance of Free Electron Lasers

- Intense X-ray pulses from VUV to hard X-ray
- Control of pulse duration
- Control of pulse energy
- Spatial coherence
- Temporal coherence
- Generation of shorter wavelengths in harmonic stages
- Precise synchronization
- Shorter undulators
- THz–IR pump pulse

PLUS a superconducting accelerator and high repetition rate injector allows high-power electron and photon beams

- High repetition rate X-ray pulses
- CW pulse structure
- High average power X-ray beams

Electron Beam "Wiggles" and Radiation Builds in a Resonant Process

 Over one undulator period, the electron is delayed with respect to the light by one optical wavelength

Microbunching Introduces *Coherent* Emission in a Free Electron Laser

Coherent emission - higher flux and brightness

Dominates if s, < 1

$$I_{total}(\omega) = \left\{ N + N(N-1) |g(k)|^2 \right\} I_e(\omega)$$

$$g(k) = \int_{-\infty}^{\infty} \rho(z) e^{ikz} dz$$

Laser Manipulations of the Electron Beam

- Electron beam couples to E-field of laser when co-propagating in an undulator
- Over one undulator period, the electron is delayed with respect to the light by one optical wavelength

Bunching of the Electron Beam

ENERGY MODULATION FOLLOWED BY DISPERSIVE SECTION

High Gain Harmonic Generation (HGHG)

HHG Seeded FEL

Example with seed at 30 nm, radiating in the water window First stages amplify low-power seed

M. Gullans, G. Penn, and A.A. Zholents, "Performance study of a soft X-ray harmonic generation FEL seeded with an EUV laser pulse", *Optics Communications* 274, 167-175 (2007)

Concept for a High-Repetition Rate, Seeded, VUV–Soft X-ray FEL Facility

Array of 10 configurable FEL beamlines, up to 20 X-ray beamlines 100 kHz CW pulse rate, capability of one FEL having MHz rate Independent control of wavelength, pulse duration, polarization Each FEL configured for experimental requirements; seeded, attosecond, ESASE, mode-locked, echo effect, etc

NGLS Design Concept

- Coherent soft x-ray laser
- 10 eV 1 keV range
 - harmonics to 5 keV
- Seeded by optical lasers
- Multiple, simultaneous beams
 - with different properties
- Time-bandwidth limited pulses
 - Ultrashort (~250 attoseconds)
 - Narrow bandwidth (meV)
- High peak power for nonlinear optics (~ 1 GW)
- Control of peak power 10–1000 MW to minimize sample damage
- High average power for low scattering rate experiments (~ 1−10+ W)
- High repetition rate for good S/N (~100 kHz–MHz+ for some beamlines)
- Capable of serving large number of users (~ 2000 users/year)

Current R&D Activities

• R&D in critical technologies

- CW VHF photo-gun ———
- High efficiency photocathodes -
- Fast kicker and pulser
- Laser development (SBIR and LLNL collaboration)
- Short-period undulator R&D
- Timing & synchronization systems

A High Rep-rate Injector

A High Rep-rate VHF Cavity Electron Gun

A High Rep-rate VHF Cavity Electron Gun

Electric field accelerates photo-emitted electron **bunches**

Photocathode mounts on nose-cone

VHF Gun Cavity Fabrication

High Brightness Photocathodes

Reduce emittance

FEL amplification needs very small emittance, e

$$arepsilon < rac{ ext{FEL wavelength}}{4\pi}$$

Acceleration to high energy reduces geometric emittance

$$\varepsilon \propto \frac{1}{\text{electron energy}}$$

Increase efficiency

Metal: $QE = 5x10^{-5}$, 1 MHz, 4.65 eV, 5% IR-UV

- kW of IR needed, psec pulses

- robust, fast emission

Semiconductor: $QE = 5x10^{-2}$, IR

- ~W of IR needed

- fragile, slow emission, current limited

Higher efficiency means

Smaller initial emittance means

smaller accelerators for fixed wavelength

- lower cost

- wider capabilities

smaller lasers for fixed repetition rate

- lower cost

higher repetition rate for fixed laser power

- increased capabilities

Characterizing Photocathodes

Employ surface science and materials science expertise at the ALS

- Full measurement of momentum distribution and yield as function of
 - Polarization
 - Photon energy (2–6 eV)
 - Photon incidence angle
 - Surface preparation

- Techniques
 - Ultra-low energy angle resolved electron spectroscopy
 - Kinetic energies 0–1eV
 - Angle resolved electron yield

Photocathodes Lab (one of two)

Photocathode Materials

Alkali Antimonides eg. SbNa₂KCs

- Fast
- Reactive; requires UHV ~ 1e-10 mBar pressure
- High QE (typ. 10%)
- No pulse charge saturation
- Requires green light (efficient conversion from IR)
- nC, 1 MHz....40 mW of IR required (laser oscillator)
- Unproven at high rep rate and high average current

PHOTONIS Photomultiplier tube basics

Cs₂Te (used at FLASH for example)

- Fast
- Relatively robust and un-reactive
 - Can be used in a high gradient rf gun
- High QE; typ. 10%
- No pulse charge saturation
- Requires UV (eg. 3rd harm. of Ti:Sapphire: 5% conversion effic.)
- For 1 nC 1 MHz reprate, ~ 1 W 1060nm required
- Unproven at high rep rate and high average current

Photocathode Laser (1)

Built by LLNL

System will deliver: 1 MHz

1 mJ @ 1064 nm (1 W)

~0.4 mJ @ 532 nm (0.4 W)

~1 ps FWHM

Photocathode Laser (2)

Built by Q-Peak and MIT-LL

- Passively mode-locked cryo Yb:YAG laser
- Use a pulse picker to reduce the repetition rate to as low as 100 kHz
- Amplify the resulting pulse train in a 4-pass cryo Yb:YAG laser

APEX Advanced Photoinjector Experiment

X-ray Pump—Probe Experiments Require Precision Timing & Synchronization

- Ultrafast laser pulse "pumps" a process in the sample
- Ultrafast x-ray pulse "probes" the sample after time ∆t
- By varying the time Δt , one can make a "movie" of the dynamics in a sample.
- Synchronism is achieved by locking the x-rays and laser to a common clock.

Timing & Synchronization System

- Changes in line length are sensed by interferometer, beat signal sent to receiver (55 MHz)
- Receiver applies phase shift to frequency shifter RF, stabilizing optical phase at end
- Optical phase correction is used to calculate RF phase shift
- Thermal drift of beat fiber delay is ~1ns, becomes 0.5fs of optical phase error on main
- CW laser is absolutely stabilized
- **Detection of fringes is at receiver**
- Signal paths not actively stabilized are temperature controlled

Timing & Synchronization Systems Results

 10^{4}

NGLS Studies at LBNL

Design studies for a future FEL facility

- Coherent soft x-ray laser
- 10 eV 1 keV range
 - harmonics to 5 keV
- Seeded by optical lasers
- Multiple, simultaneous beams
 - with different properties
- Time-bandwidth limited pulses
 - Ultrashort (~250 attoseconds)
 - Narrow bandwidth (meV)
- High peak power for nonlinear optics (~ 1 GW)
- Control of peak power 10–1000 MW to minimize sample damage
- High average power for low scattering rate experiments (~ 1−10+ W)
- High repetition rate for good S/N (~100 kHz–MHz+ for some beamlines)
- Capable of serving large number of users (~ 2000 users/year)

Thanks to an Excellent Team **Contributions From Many Divisions Within LBNL**

Ken Baptiste Walter Barry Ali Belkacem John Byrd

Andrew Charman

John Corlett **Woody Delp Peter Denes** Rick Donahue **Larry Doolittle**

Roger Falcone Bill Fawley

Jun Feng

Daniele Filippetto Stefan Finsterle

Jim Floyd

Steve Gourlay Mike Greaves Joe Harkins **Zahid Hussein**

Preston Jordan

Janos Kirz **Eugene Kur**

Slawomir Kwiatkowski

Steve Leone Derun Li Steve Lidia

Tak Pui Lou **Bill McCurdy** Pat Oddone

Howard Padmore

Christos Papadopoulos

Gregg Penn Paul Preuss Ji Qiang Alex Ratti

Matthias Reinsch

David Robin Kem Robinson Glenna Rogers

Fernando Sannibale

Richard Sextro **Bob Schoenlein John Staples Christoph Steier Theodore Vecchione**

Will Waldron Weishi Wan **Russell Wells Russell Wilcox** Jonathan Wurtele Lingyun Yang (BNL) Sasha Zholents (ANL)

Max Zolotorev

A NGLS at LBNL

VHF Gun CAD Model

Echo Enabled Harmonic Generation

Two-color Ultrafast Pulses with Time Delay

~250 as pulses with variable wavelength and variable delay

A. Zholents, G. Penn, "Obtaining two attosecond pulses for X-ray stimulated Raman spectroscopy", NIM-A, **612**, 2, 2010

